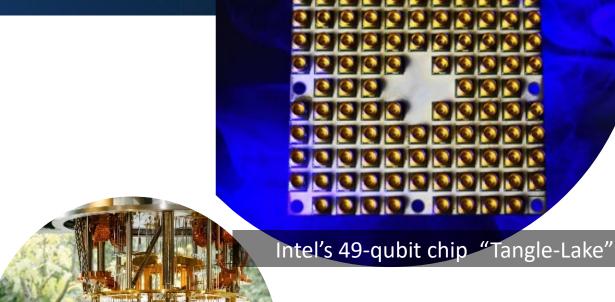
# Cryptography in a Post-Quantum World


**Dustin Moody** 



Crypto Technology Group Computer Security Division Information Technology Lab

## Quantum Computers

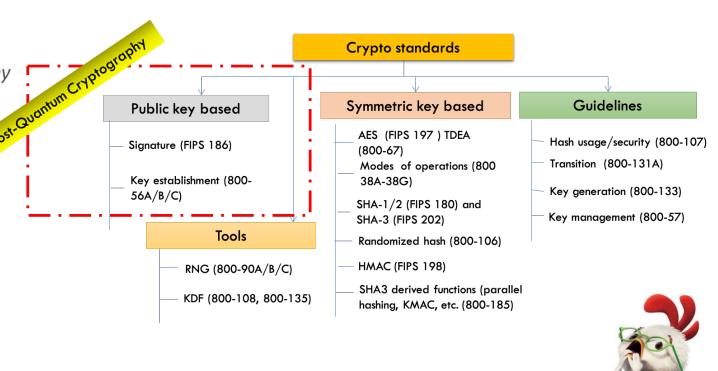
- Exploit quantum mechanics to process information
- "Qubits" instead of bits
- Potential to vastly increase computational power beyond classical computing limit
- Limitations:
  - When a measurement is made on quantum system, superposition collapses
  - Only good at certain problems
  - Quantum states are very fragile and must be extremely well isolated



IBM's 50-qubit quantum computer



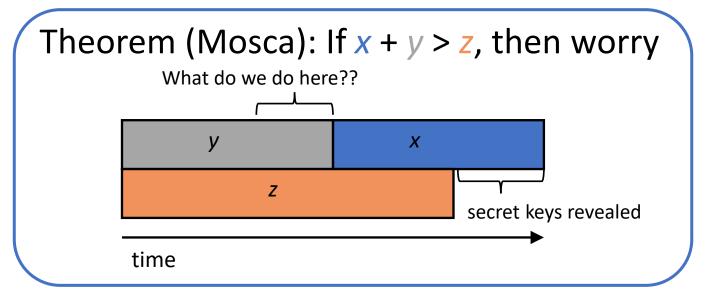
Google's 72-qubit chip "Bristlecone"


## The Quantum Threat



- NIST public-key crypto standards
  - **SP 800-56A:** Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography
  - **SP 800-56B**: Recommendation for Pair-Wise Key-Establishment Using Integer Factorization Cryptography
  - FIPS 186: The Digital Signature Standard

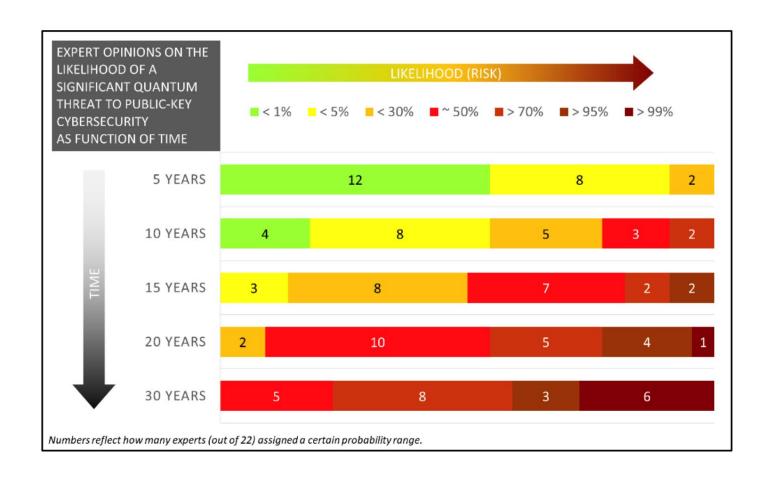
vulnerable to attacks from a (large-scale) quantum computer


- Shor's algorithm would break RSA, ECDSA, (EC)DH, DSA
- Symmetric-key crypto standards would also be affected, but less dramatically



## Post-Quantum Cryptography




- Post-Quantum Cryptography (PQC)
  - Cryptosystems which run on classical computers, and are believed to be resistant to attacks from both classical and quantum computers
- How soon do we need to worry?



- x time of maintaining data security
- y time for PQC standardization and adoption
- z time for quantum computer to be developed

## When will a Quantum Computer be Built?



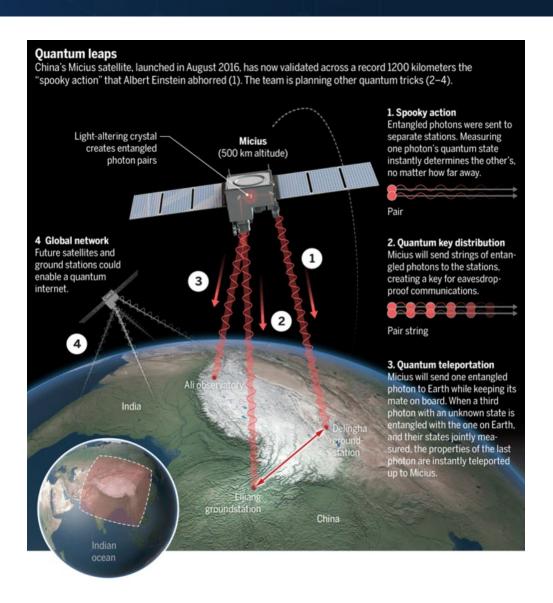


Source: M. Mosca, M. Piani, Quantum Threat Timeline Report, Oct 2019

available at: <a href="https://globalriskinstitute.org/publications/quantum-threat-timeline/">https://globalriskinstitute.org/publications/quantum-threat-timeline/</a>

## Quantum Cryptography aka QKD




## Using quantum technology to build cryptosystems

 Theoretically unconditional security guaranteed by the laws of physics

#### Limitations

- Can do encryption, but not authentication
- Quantum networks not very scalable
- Expensive and needs special hardware

Lots of money being spent on "quantum" This is <u>NOT</u> our focus



## NIST PQC Milestones and Timelines



#### 2016

Determined criteria and requirements, published NISTIR 8105

Announced call for proposals

#### 2017

Received 82 submissions

Announced 69 1st round candidates

#### 2018

Held the 1st NIST PQC standardization Conference

#### 2019

Announced 26 2<sup>nd</sup> round candidates, NISTIR 8240

Held the 2<sup>nd</sup> NIST PQC Standardization Conference





#### 2020

Announced 3rd round 7 finalists and 8 alternate candidates. NISTIR 8309

#### 2021

Hold the 3<sup>rd</sup> NIST PQC Standardization Conference

#### 2022-2023

Release draft standards and call for public comments

### **Evaluation Criteria**



#### Security – against both classical and quantum attacks

| Level | Security Description                                        |  |  |  |  |
|-------|-------------------------------------------------------------|--|--|--|--|
| I     | At least as hard to break as AES128 (exhaustive key search) |  |  |  |  |
| П     | At least as hard to break as SHA256 (collision search)      |  |  |  |  |
| Ш     | At least as hard to break as AES192 (exhaustive key search) |  |  |  |  |
| IV    | At least as hard to break as SHA384 (collision search)      |  |  |  |  |
| V     | At least as hard to break as AES256 (exhaustive key search) |  |  |  |  |

NIST asked submitters to focus on levels 1,2, and 3. (Levels 4 and 5 are for very high security)

#### Performance – measured on various classical platforms

Other properties: Drop-in replacements, Perfect forward secrecy, Resistance to side-channel attacks, Simplicity and flexibility, Misuse resistance, etc.

## A Worldwide Effort





25 Countries

16 States

**6 Continents** 

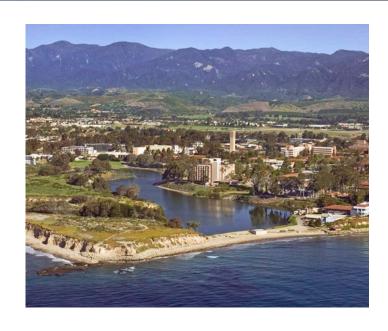
## The 1st Round



- A lot of schemes quickly attacked!
- Many similar schemes (esp. lattice KEMs)
- 1<sup>st</sup> NIST PQC Standardization workshop
- Over 300 "official comments" and 900 posts on the pqc-forum
- Research and performance numbers

After a year: 26 schemes move on




|                                      | Signatures | KEM/Encryption | Overall |
|--------------------------------------|------------|----------------|---------|
| Lattice-based                        | 5          | 21             | 26      |
| Code-based                           | 2          | 17             | 19      |
| Multi-variate                        | 7          | 2              | 9       |
| Stateless Hash or<br>Symmetric based | 3          |                | 3       |
| Other                                | 2          | 5              | 7       |
| Total                                | 19         | 45             | 64      |

### The 2nd Round



- 4 merged submissions
- Maintained diversity of algorithms
- Cryptanalysis continues
- LAC, LEDAcrypt, RQC, Rollo, MQDSS, qTESLA, LUOV all broken
- 2<sup>nd</sup> NIST PQC Standardization workshop
- More benchmarking and real world experiments

• After 18 months: 15 submissions move on



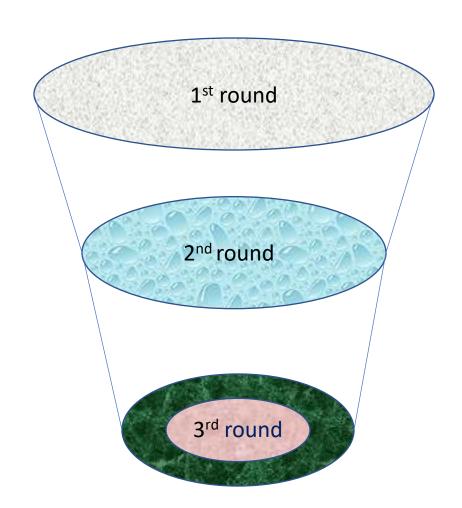
|                                      | Signatures | KEM/Encryption | Overall |
|--------------------------------------|------------|----------------|---------|
| Lattice-based                        | 3          | 9              | 12      |
| Code-based                           |            | 7              | 7       |
| Multi-variate                        | 4          |                | 4       |
| Stateless Hash or<br>Symmetric based | 2          |                | 2       |
| Isogeny                              |            | 1              | 1       |
| Total                                | 10         | 16             | 26      |

## Challenges and Considerations in Selecting Algorithms

#### Security

- Security levels offered
- (confidence in) security proof
- Any attacks
- Classical/quantum complexity

#### Performance


- Size of parameters
- Speed of KeyGen, Enc/Dec, Sign/Verify
- Decryption failures

#### Algorithm and implementation characteristics

- IP issues
- Side channel resistance
- Simplicity and clarity of documentation
- Flexible

#### Other

- Round 2 changes
- Official comments/pqc-forum discussion
- Papers published/presented



## The 3<sup>rd</sup> Round Finalists and Alternates



- NIST selected 7 Finalists and 8 Alternates
  - Finalists: most promising algorithms we expect to be ready for standardization at end of 3<sup>rd</sup> round
  - Alternates: candidates for potential standardization, most likely after another (4th) round
- KEM finalists: Kyber, NTRU, SABER, Classic McEliece
- Signature finalists: Dilithium, Falcon, Rainbow
- KEM alternates: Bike, FrodoKEM, HQC, NTRUprime, SIKE
- Signature alternates: GeMSS, Picnic, Sphincs+

|                                      | Signatures |   | KEM/Encryption |   | Overall |   |
|--------------------------------------|------------|---|----------------|---|---------|---|
| Lattice-based                        | 2          |   | 3              | 2 | 5       | 2 |
| Code-based                           |            |   | 1              | 2 | 1       | 2 |
| Multi-variate                        | 1          | 1 |                |   | 1       | 1 |
| Stateless Hash or<br>Symmetric based |            | 2 |                |   |         | 2 |
| Isogeny                              |            |   |                | 1 |         | 1 |
| Total                                | 3          | 3 | 4              | 5 | 7       | 8 |

## Lattice-based KEMs



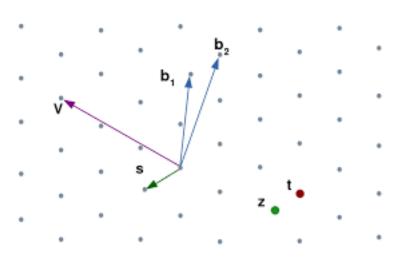
#### Crystals-Kyber

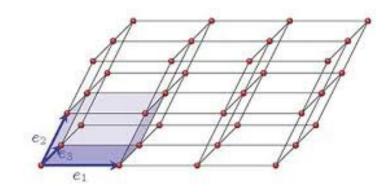
Great all-around → Finalist

#### Saber

Great all-around → Finalist

#### NTRU


• Not quite as efficient, but older, IP situation → Finalist


#### NTRUprime

• Different design choice and security model → Alternate

#### FrodoKEM

• Conservative/Backup → Alternate





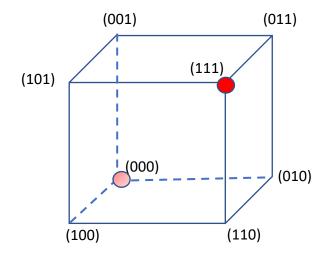
## Isogeny- and Code-based KEMs

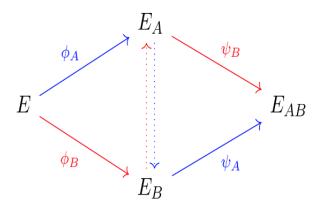


#### Classic McEliece

 Oldest submission, large public keys but small ciphertexts → Finalist

#### BIKE


 Good performance, CCA security?, more time to be stable → Alternate


#### HQC

 Better security analysis/larger keys (than BIKE) → Alternate

#### SIKE

• Newer security problem, an order slower → Alternate

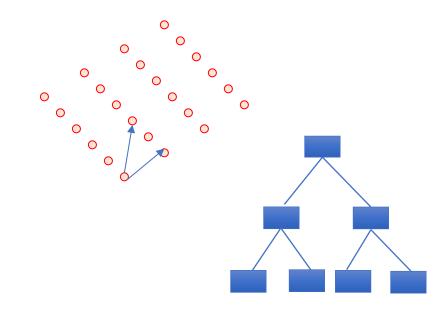




## The Signatures



#### Dilithium and Falcon


- Both balanced, efficient lattice-based signatures
- coreSVP security higher?
- → Finalists

#### SPHINCS+ and Picnic

- SPHINCS+ is stable, conservative security, larger/slower → Alternate
- Picnic not stable yet, but has lots of potential → Alternate

#### Rainbow and GeMMS

Both have large public keys, small signatures. Rainbow a bit better  $\rightarrow$  Finalist, GeMMS  $\rightarrow$  Alternate



$$p^{(1)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(1)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(1)} \cdot x_i + p_0^{(1)}$$

$$p^{(2)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(2)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(2)} \cdot x_i + p_0^{(2)}$$

$$\vdots$$

$$p^{(m)}(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ii}^{(m)} \cdot x_i x_i + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

$$p^{(m)}(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=i}^n p_{ij}^{(m)} \cdot x_i x_j + \sum_{i=1}^n p_i^{(m)} \cdot x_i + p_0^{(m)}$$

### Timeline



- The 3<sup>rd</sup> round will last 12-18 months
  - NIST will then select which finalist algorithms to standardize
  - NIST will also select which alternates to keep studying in a 4<sup>th</sup> round (\*)
  - The 4<sup>th</sup> round will similarly be 12-18 months
  - NIST may decide to consider new schemes details to come
- NIST will hold a 3rd PQC Standardization workshop ~ spring 2021

We expect to release draft standards for public comment in 2022-2023

The finalized standard will hopefully be ready by 2024

## Research Challenges



#### Many important topics to be studied:

- Security proofs in both the ROM and QROM
- Does the specific ring/module/field choice matter for security?
  - Or choice of noise distribution?
  - Does "product" or "quotient" style LWE matter?
- Finer-grained metrics for security of lattice-based crypto (coreSVP vs. real-world security)
- Are there any important attack avenues that have gone unnoticed?
- Side-channel attacks/resistant implementations for finalists and alternates
- More hardware implementations
- Ease of implementations decryption failures, floating point arithmetic, noise sampling, etc.

#### Specific algorithm questions

• Decoding analysis for BIKE, category 1 security levels for Kyber/Saber/Dilithium, algebraic cryptanalysis of cyclotomics for lattices, etc...

## Other Challenges



- Many other challenges to work on
  - IP issues
  - Continued performance benchmarking in different platforms and environments
    - For hardware NIST suggested Artix-7 and Cortex M4 (with all options) for easier comparison
  - Real world experiments
    - How do these algorithms work in actual protocols and applications.
      - Are some key sizes too large?

## Stateful Hash Based Signatures for Early Adoption



## Stateful hash-based signatures were proposed in 1970s

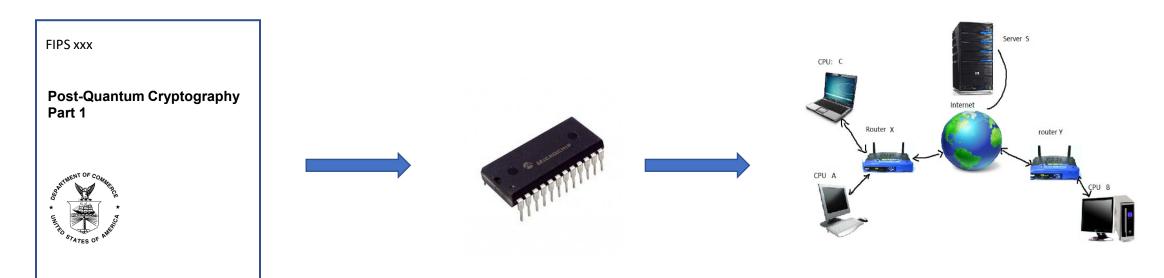
- Rely on assumptions on hash functions, that is, not on number theory complexity assumptions
- It is essentially limited-time signatures, which require state management

#### NIST specification on stateful hashbased signatures

• NIST SP 800-208 "Recommendation for Stateful Hash-Based Signature Schemes"

## Internet Engineering Task Force (IETF) has released two RFCs on hash-based signatures

- RFC 8391 "XMSS: eXtended Merkle Signature Scheme" (By Internet Research Task Force (IRTF))
- RFC 8554 "Leighton-Micali Hash-Based Signatures" (By Internet Research Task Force (IRTF))

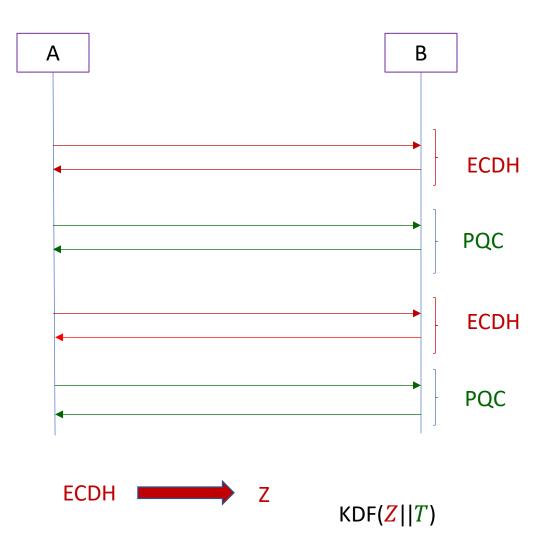

## ISO/IEC JTC 1 SC27 WG2 Project on hash-based signatures

- Stateful hash-based signatures will be specified in ISO/IEC 14888 Part 4
- It is in the 1st Working Draft stage

## Transition and Migration



- Public key Cryptography has been used everywhere; 2 important uses:
  - Communication security; and
  - Trusted platforms
- Transition and migration are going to be a long journey full of exciting adventures
  - Understand new features, characters, implementation challenges
  - Identify barriers, issues, show-stoppers, needed justifications, etc.
  - Reduce the risk of disruptions in operation and security




## Hybrid mode – An approach for migration



NIST SP800-56C Rev. 2 Recommendation for Key-Derivation Methods in Key-Establishment Schemes August 2020

"In addition to the currently approved techniques for the generation of the shared secret Z ... this Recommendation permits the use of a "hybrid" shared secret of the form  $Z' = Z \mid \mid T$ , a concatenation consisting of a "standard" shared secret Z that was generated during the execution of a key-establishment scheme (as currently specified in [SP 800-56A] or [SP 800-56B]) followed by an auxiliary shared secret T that has been generated using some other method"



## NIST Transition Guideline for PQC?



#### NIST has published transition guidelines for algorithms and key lengths

NIST SP 800-131A Revision 2 "Transitioning the Use of Cryptographic Algorithms and Key Lengths" - Examples

Three-key Triple DES

Encryption - Deprecated through 2023 Disallowed after 2023 Decryption - Legacy use

• SHA-1

Digital signature generation - Disallowed, except where specifically allowed by NIST protocol-specific guidance Digital signature verification - Legacy use Non-digital signature applications – Acceptable

• Key establishment methods with strength < 112 bits (e.g. DH mod p, |p| < 2048 ) Disallowed

#### NIST will provide transition guidelines to PQC standards

- The timeframe will be based on a risk assessment of quantum attacks
- NCCoE hosted a workshop on <u>Considerations in Migrating to Post-Quantum Cryptographic</u> <u>Algorithms</u> on October 7

## What can organizations do now?



- Perform a quantum risk assessment within your organization
  - Identify information assets and their current crypto protection
  - Identify what 'x', 'y', and 'z' might be for you determine your quantum risk
  - Prioritize activities required to maintain awareness, and to migrate technology to quantum-safe solutions
- Evaluate vendor products with quantum safe features
  - Know which products are not quantum safe
  - Ask vendors for quantum safe features in procurement templates
- Develop an internal knowledge base amongst IT staff
- Track developments in quantum computing and quantum safe solutions, and to establish a roadmap to quantum readiness for your organization
- Act now it will be less expensive, less disruptive, and less likely to have mistakes caused by rushing and scrambling





## Conclusion

We can start to see the end?

NIST is grateful for everybody's efforts

- Check out <u>www.nist.gov/pqcrypto</u>
  - Sign up for the pqc-forum for announcements & discussion
  - send e-mail to <a href="mailto:pqc-comments@nist.gov">pqc-comments@nist.gov</a>